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Abstract

Neural network models of language have long been used as
a tool for developing hypotheses about conceptual represen-
tation in the mind and brain. For many years, such use in-
volved extracting vector-space representations of words and
using distances among these to predict or understand human
behavior in various semantic tasks. In contemporary language
AIs, however, it is possible to interrogate the latent structure
of conceptual representations using methods nearly identical
to those commonly used with human participants. The current
work uses two common techniques borrowed from cognitive
psychology to estimate and compare lexical-semantic structure
in both humans and a well-known AI, the DaVinci variant of
GPT-3. In humans, we show that conceptual structure is ro-
bust to differences in culture, language, and method of estima-
tion. Structures estimated from AI behavior, while individu-
ally fairly consistent with those estimated from human behav-
ior, depend much more upon the particular task used to gener-
ate behavior responses–responses generated by the very same
model in the two tasks yield estimates of conceptual structure
that cohere less with one another than do human structure esti-
mates. The results suggest one important way that knowledge
inhering in contemporary AIs can differ from human cogni-
tion.
Keywords: Artificial Intelligence, Semantic memory, Natural
Language Processing, Knowledge representation, Neural Net-
works

Introduction
Since Elman’s pioneering work(J. L. Elman, 1990) showcas-
ing the ability of neural networks to capture the rich statistics
of human natural language through backpropagation, these
models have provided a useful tool, and sometimes a gad-
fly, for developing hypotheses about the cognitive and neural
mechanisms that support language. When trained on a task
that seems almost absurdly simplistic–continuous, sequen-
tial prediction of upcoming words in sentences–early mod-
els exhibited properties that upended received wisdom about
what language is and how it works. They acquired internal
representations that blended syntactic and semantic informa-
tion, rather than keeping these separate as classic psycho-
linguistics required. They handled grammatical dependen-
cies, not by constructing syntactic structure trees, but by
learning and exploiting temporal patterns in language. Per-
haps most surprisingly, they illustrated that statistical struc-
ture latent in lexical contexts could go a long way toward ex-
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plaining how we acquire knowledge of semantic similarity re-
lations among words. Because words with similar meanings
tend to be encountered in similar linguistic contexts(Firth,
1957), models that exploit contextual similarity when rep-
resenting words come to express semantic relations between
them.

Though early work was limited in the nature and complex-
ity of the ”language” used to train the models(J. Elman, 1991;
McClelland, Rumelhart, & the PDP Research Group, 1990),
these ideas spurred a variety of computational approaches
that could be applied to large corpora of written text. Ap-
proaches such as latent semantic analysis(Deerwester, Du-
mais, Furnas, Landauer, & Harshman, 1990) and skipgram
models(Mikolov, Chen, Corrado, & Dean, 2013), for in-
stance, learn vector-space representations of words from
overlap in their linguistic contexts, which turn out to capture
a variety of semantic relationships amongst words, including
some that are highly abstract(Grand, Blank, Pereira, & Fe-
dorenko, 2022; J. L. Elman, 2004; Lupyan & Lewis, 2019).

In all of this work, lexical-semantic representations are cast
as static points in a high-dimensional vector space, either
computed directly from estimates of word co-occurrence in
large text corpora(Deerwester et al., 1990; Burgess, 1998),
or instantiated as the learned activation patterns arising in
a neural network model trained on such corpora. To eval-
uate whether a given approach expresses semantic structure
similar to that discerned by human participants, the experi-
menter typically compares the similarities between word vec-
tors learned by a model to decisions or behaviors exhibited
by participants in semantic tasks. For instance, LSA models
were tested on synonym-judgment tasks drawn from a com-
mon standardized test of English language comprehension
by comparing the cosine distance between the vectors cor-
responding to a target word and each of several option words,
and having the model ”choose” the option with the small-
est distance (Landauer, Foltz, & Laham, 1998). The model
was deemed successful because the choice computed in this
way often aligned with the choices of native English speak-
ers. Such a procedure was not just a useful way for assessing
whether model representations are human-like—it was just
about the only way to do so for this class of models. That is,
we were limited in the ways we could interact with the model
— one couldn’t just treat the model like a human participant
by giving it a set of instructions and a series of stimuli and
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the word at the top?
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Figure 1: (A) Procedure for querying both human and GPT3 conceptual structure. Both agents performed the same verbal
fluency and triplet similarity judgement task. The data generated from these tasks were used to fit low-dimensional feature
vectors. (B) The squared procrustes correlation between embedding spaces obtained from the Verbal Fluency Task on humans
(Human feat lists), Similarity Judgements on humans (Human triplets), Verbal Fluency on GPT-3 (GPT feat. lists(verified)),
and Similarity Judgements on GPT-3 (GPT triplets).

just recording its responses.
In the era of large language models such as Open

AI’s GPT3 (Brown et al., 2020), Meta’s OPT 175(Zhang
et al., 2022), Google’s FLAN (Wei et al., 2021), and
others(Chowdhery et al., 2022; Hoffmann et al., 2022; Du
et al., 2022), this has changed. Such models are many
orders of magnitude larger than classical connectionist ap-
proaches, employ a range of architectural and training inno-
vations, and are optimized on truly fast quantities of data—
but nevertheless they operate on principles not dissimilar to
those that Elman and others pioneered. That is, they ex-
ploit patterns of word co-occurrence in natural language to
learn distributed, context-sensitive representations of linguis-
tic meaning at multiple levels, and from these representations
they generate probabilistic predictions about likely upcoming
words. Given an initial linguistic prompt, such models gener-
ate plausible and grammatically well-formed responses, cre-
ated by iteratively predicting what words are likely to come
next and sampling from this distribution. The results are
not only eerily human-like; recent iterations like Chat GPT
(Ouyang et al., 2022) can write essays sufficient to earn a
B in a typical college class, produce working Python code
from a general description of the function, generate coherent
explanations for a variety of phenomena, and answer factual
questions with remarkable accuracy. In short, such models
appear to show several hallmarks of conceptual abilities that
until recently were uniquely human.

These innovations allow cognitive scientists, for the first
time, to measure and evaluate conceptual structure in a non-
human system using precisely the same natural-language-
based methods that we use to study human participants. Large
language models can receive written instructions followed
by a series of stimuli and generate interpretable, natural-
language responses for each. The responses generated can
be recorded and analyzed in precisely the same manner as
responses generated by humans, and the results of such anal-

yses can then be compared within and between human and AI
systems, as a means of understanding whether and how these
intelligences differ.

The current paper uses this approach to understand simi-
larities and differences in the way that lexical semantic rep-
resentations are structured in human and AI minds, focus-
ing on one remarkable aspect of human concepts–specifically,
their robustness. As Rosch showed many years ago(E. Rosch,
1975; E. H. Rosch, 1973), the same conceptual relations un-
derlie behavior in a variety of tasks, from naming and cat-
egorization to feature-listing to similarity judgments to sort-
ing. Similar conceptual relations can be observed across dis-
tinct languages and cultures(Thompson, Roberts, & Lupyan,
2020). Robustness is important because it allows for shared
understanding and communication across cultures, over time,
and through generations: Homer still speaks to us despite the
astonishing differences between his world and ours, because
many of the concepts that organized his world cohere with
those that organize ours. Our goal was to assess whether
conceptual structure in a contemporary AI (a Large Lan-
guage Model) is also coherent when evaluated using meth-
ods comparable to those employed with human participants,
or whether human and AI ”minds” differ in this important
regard.

To answer this question, we first measured the robustness
of conceptual structure in human agents by comparing esti-
mates of such structure for a fixed set of concepts using two
different behavioral methods in two distinct groups differing
in both culture and language. We then conducted the same
behavioral experiments on a large-language AI (the DaVinci
variant of GPT3), and evaluated (a) the degree to which es-
timated conceptual relations in the AI accord with those ob-
served in humans, and (b) whether humans and AI differ in
the apparent robustness of such structure. We further com-
pared the structures estimated from the AI’s overt patterns of
behavior to those encoded in its internal representations, and



also to semantic vectors extracted from two other common
models in machine learning. In addition to simply demon-
strating how methods from cognitive psychology can be used
to better understand machine intelligence, the results point to
an important difference between current state of the art AI
and human conceptual representations.

Study 1: How coherent is human conceptual
structure?

The goal of study 1 was to evaluate how robust estimates
of conceptual structure appear when generated from human
behavior in two very different populations and tasks, using
methods that can be replicated with large language models.
To this end, we focused on a subset of 30 concepts taken
from a large feature-norming study conducted at KU Leu-
ven (De Deyne et al., 2008). We estimated semantic simi-
larity relations amongst these items using two distinct meth-
ods: first via vector distance in the feature space produced, as
captured by the norms themselves, and second using a triadic-
comparison task to estimate low-dimensional embeddings for
the words that express their semantic relatedness.

The resulting datasets differ from each other in (1) the task
used (feature generation vs semantic similarity judgments),
(2) the language of instruction and production (Dutch vs En-
glish), and (3) the population from which the participants
were recruited (Belgian students in early 2000’s vs Ameri-
can MTurk workers in 2022). The central question was how
similar the resulting estimated structures are to one another,
a metric we call structure coherence. If estimated conceptual
similarities vary substantially with language, culture, or esti-
mation method, the structural coherence between groups will
be relatively low; if such estimates are robust to these fac-
tors, it will be high. The comparison then provides a baseline
against which to compare structural coherence in the AI.

Methods
Feature listing study Data were taken from the Leuven
large feature-listing norms(De Deyne et al., 2008). In an ini-
tial generation phase, this study asked 1003 participants to list
10 semantic features for 6-10 different stimulus words which
were were one of 295 (129 animals and 166 artifacts) con-
crete object concepts. The set of features produced across all
items were tabulated into a 2600d feature vector. In a second
verification phase, four independent raters considered each
concept-feature pair and evaluated whether the feature was
true of the concept. The final dataset thus contained a C (con-
cept) by F (feature) matrix whose entries indicate how many
of the four raters judged concept C to have feature F . Note
that this endeavour required the raters to judge hundreds of
thousands of concept-property pairs!

From the full set of items, we selected 15 tools and 15
reptiles for use in this study. The reptiles were: turtle, alli-
gator, lizard, tortoise, cobra, snake, blindworm, gecko, boa
python, toad, crocodile, chameleon, caiman, salamander, and
dinosaur. The tools were: hammer, screwdriver, grinding

disc, vacuum cleaner, spanner, lawn mower, axe, saw, knife,
nail, chisel, shovel, anvil, oilcan, paint brush. We chose
these categories because they express both broad, superor-
dinate distinctions (living/nonliving) as well as finer-grained
internal structure (e.g. snakes vs lizards vs crocodilians).

The raw feature vectors were binarized by converting all
non-zero entries to 1, with the rationale that a given feature is
potentially true of a concept if at least one rater judged it to be
so. Following Rosch (E. H. Rosch, 1973), McRae (McRae,
Cree, Seidenberg, & McNorgan, 2005) among others, we
then estimated the conceptual similarity relations amongst all
pairs of items by taking the cosine distance between their bi-
narized feature vectors, and reduced the space to three di-
mensions via classical multidimensional scaling (Kruskal &
Wish, 1978). The resulting embedding expresses conceptual
similarity amongst 30 concrete objects, as estimated via se-
mantic feature listing and verification, in a study conducted
in Dutch on a large group of students living in Belgium in the
early 2010s.

Triadic comparison study. As a second estimate of con-
ceptual structure amongst the same 30 items, we conducted a
triadic comparison or triplet judgment task in which partici-
pants must decide which of two option words is more similar
in meaning to a third reference word. From many such judg-
ments, ordinal embedding techniques(Jamieson, Jain, Fer-
nandez, Glattard, & Nowak, 2015) can be used to situate
words within a low-dimensional space in which Euclidean
distances between two words capture the probability that they
will be selected as ”most similar” relative to some arbitrary
third word. Like feature-listing, triplet judgment studies can
be conducted completely verbally, and so can be simulated
using large language models.

Participants were 18 Amazon Mechanical Turk workers
recruited using CloudResearch. Each participant provided in-
formed consent in compliance with our Institutional IRB and
was compensated for their time.

Stimuli were English translations of the 30 item names
listed above, half reptiles and half tools.

Procedure. On each trial participants viewed a target word
displayed above two option words, and were instructed to
choose via button press which of the two option words was
most similar to the target in its meaning. Each participant
completed 200 trials, with the triplet on each trial sampled
randomly with uniform probability from the space of all
possible triplets. The study yielded a total of 3600 judg-
ments, an order of magnitude larger than the minimal needed
to estimate an accurate 3D embedding from random sam-
pling according to estimates of sample complexity in this
task(Jamieson et al., 2015). Ninety percent of the judgments
were used to find a 3D embedding in which pairwise Eu-
clidean distances amongst words minimize the crowd-kernel
triplet loss on the training set(Tamuz, Liu, Belongie, Shamir,
& Kalai, 2011). The resulting embedding was then tested
by assessing its accuracy in predicting human judgments on
the held-out ten percent of data. The final embeddings pre-
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Figure 2: Hierarchical cluster plots showing how concepts are organized within each semantic feature space. (Top left) Spaces
generated from human data, (top right) spaces generated from neural network embeddings, and (bottom) spaces generated from
both GPT3 behavioral results and GPT3 embeddings.

dicted human decisions on held-out triplets with 75% accu-
racy, which matched the mean level of inter-subject agree-
ment on this task.

Results

Figure 2 top left shows hierarchical cluster plots of the se-
mantic embeddings from feature lists (left) versus the triadic
comparison task (right). Both embeddings strongly differen-
tiate the living from nonliving items, and show comparatively
little differentiation of subtypes within each category (though
such subtypes are clearly apparent amongst the feature-listing
embeddings). To estimate how structurally coherent the two
different embedding spaces are, we computed the square of
the Procrustes correlation (Gower, 1975) between the two
3D embeddings, a metric analogous to r2 that indicates how
much of the variation in pairwise distances from one matrix
is captured by distances in the other. This metric was 0.90,
very reliably better than chance (p < 0.001) and indicating
that distances in one space capture 90% of the variation in
the other. Thus despite differences in language, task, and cul-
tures, the two estimates of conceptual structure were well-
aligned, suggesting that human conceptual representations of
concrete objects are remarkably robust. We next consider
whether the same is true of large language models.
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Figure 3: Correlation structure between different semantic
feature vectors. Feature vectors were generated from human
and machine behavioral tasks as well as extracted from stan-
dard NLP and multimodal models. All the values are signifi-
cant with p < 0.001



Study 2: Evaluating structural coherence of
concepts within and between AI and human.

Study 2 aimed to estimate conceptual similarity relations for
the same 30 items from the behavior of an AI (the DaVinci
variant of GPT-3) asked to perform feature-listing and triadic-
judgment tasks analogous to those completed by human par-
ticipants. We first developed and conducted both tasks on
GPT-3 using their API, and computed semantic embeddings
from the text generated by the model using the same tech-
niques employed with human data. We then considered (a)
how well these estimates aligned with structures estimated
from human behaviors within each task, and (b) the structural
coherence between the two embeddings estimated via differ-
ent methods from AI behavior.

Methods
Feature listing in GPT-3 To simulate the feature-
generation phase of the Leuven study, We queried GPT-3 with
the prompt ”List the features of a [concept]” and recorded the
responses (see Figure 4 left). The model was queried with a
temperature of 0.7, meaning that responses were somewhat
stochastic so that the model produced different responses
from repetitions of the same query. For each concept We
repeated the process five times and tabulated all responses
across these runs for each item. The responses were tran-
scribed into features by breaking down phrases or sentence
into constituent predicates; for instance, a response such as
”a tiger is covered in stripes” was transcribed as ”has stripes.”
Where phrases included modifiers, these were transcribed
separately; for instance, a phrase like ”has a long neck” was
transcribed as two features, ”has neck” and ”has long neck.”
Finally, alternate wordings for the same property were treated
as denoting a single feature; for instance, ”its claws are sharp”
and ”has razor-sharp claws” would be coded as the two fea-
tures ”has claws” and ”has sharp claws.” We did not, however,
collapse synonyms or otherwise reduce the feature set. This
exercise generated a total of 580 unique features from the 30
items.

To simulate the feature verification phase of the Leuven
study, we then asked GPT to decide, for each concept C and
feature F , whether the concept possessed the feature (Figure
4 middle). For instance, to assess whether the model ”thinks”
that alligators are ectothermic, we probed it with the prompt
”In one word, Yes/No: Are alligators ectothermic?” (temper-
ature 0). Note that this procedure requires the AI to answer
probes for every possible concept/feature pair–for instance,
does an alligator have wheels? Does a car have a heart? etc.
These responses were used to flesh out the original feature-
listing matrix: every cell where the AI affirmed that concept
C had feature F was filled with a 1, and cells where the AI re-
sponded ”no” were filled with zeros. We refer to the resulting
matrix as the verified feature matrix. Before the feature verifi-
cation process, the concept by feature matrix was exceedingly
sparse, containing 786 1’s (associations) and 16614 0’s (no
associations). After the verification process, the concept by

feature matrix contained 7845 1’s and 9555 0’s. Finally, we
computed pairwise cosine distances between all items based
on the verified feature vectors, and used classical multidimen-
sional scaling to reduce these to three-dimensional embed-
dings, exactly comparable to the human study.

Triplet judgment in GPT-3. To simulate triplet judgment,
we used the prompt shown in Figure 4 (right) for each triplet,
using the exact same set of triplets employed across all partic-
ipants in the human study. We recorded the AI’s response for
each and from these data fit a 3D embedding using the same
algorithm and settings as the human data. The resulting em-
bedding predicted GPT-3 judgements for the held-out triplets
at a 78 % accuracy, comparable to that observed in the human
participants.

Results

Hierarchical cluster plots for embeddings generated from the
AI’s feature lists and triplet judgments are shown in the bot-
tom left panels of Figure 2, immediately below the corre-
sponding plots from human data. Both approaches reliably
separate living and nonliving things. The verified feature lists
additionally yield within-domain structure similar to that ob-
served in human lists, with all items relatively similar to one
another, and with some subcategory structure apparent (e.g.
turtle/tortoise, snakes, crocodilia). within-domain structure
estimated from triplet judgments, in contrast, looks very dif-
ferent.

These qualitative observations are borne out by the squared
Procrustes correlations between different embedding spaces,
shown in Figure 3. Similarities expressed in the space esti-
mated from verified feature lists capture 82% of the variance
in distances estimated from human feature lists, and 74% of
the variance in those estimated from human triplet judgments.
Similarities estimated from AI triplet judgments, in contrast,
account for less than half the variance in embeddings gener-
ated from human judgments. More interestingly, they account
for less than half the variance in the embeddings generated
from the AI verified feature lists. Unlike the human embed-
dings, conceptual structures estimated from different behav-
iors in the very same model do not cohere very well with each
other.

Figure 3 also shows the squared Procrustes correlations for
semantic embeddings generated via several other approaches
including (a) the raw (unverified) feature lists produced by
GPT-3, (b) the word embedding vectors extracted from GPT-
3’s internal hidden unit activation patterns, (c) word embed-
dings from the popular word2vec approach, and (d) embed-
dings extracted from a CLIP model trained to connect images
with their natural language descriptions. None of these ap-
proaches accord with human-based embeddings as well as do
the embeddings estimated from the AI verified-feature lists,
nor are the various structures particularly coherent with one
another. No pair of AI-estimated embeddings shows the de-
gree of coherence observed between the estimates derived
from human judgments.



A B C

Figure 4: Prompts for querying GPT-3 to perform (A) Feature generation, (B) Feature Verification and (C) Similarity judgement.

Discussion
In this study, we compared the conceptual structures of hu-
mans and GPT-3 using two cognitive tasks: a semantic
feature-listing task and a triplet similarity judgement task.
Our results showed that the conceptual representations gen-
erated from human judgments, despite being estimated from
quite different tasks, in different languages, across different
cultures, were remarkably coherent: similarities captured in
one space accounted for 90% of the variance in the other.
This suggests that the conceptual structures underlying hu-
man semantic cognition are remarkably robust to differences
in language, cultural background, and the nature of the task
at hand.

In contrast, embeddings obtained from analogous behav-
iors in GPT-3 differed depending upon on the task. While em-
beddings estimated from verified feature lists aligned moder-
ately well with those estimated from human feature norms,
those estimated from triplet judgments or from the raw (un-
verified) feature lists did not, nor did the two embedding
spaces from the AI cohere well with each other. Embed-
ding spaces extracted directly from model hidden represen-
tations or from other common neural network techniques did
not fare better: in most comparisons, distances captured by
one model-derived embedding space accounted for, at best,
half the variance in any other. The sole exception was the
space estimated from AI verified feature vectors, which co-
hered modestly well with embeddings taken directly from the
GPT-3 hidden layer (66% of variance) and with word2vec
embeddings (61%).

Together these results suggest an important difference be-
tween human cognition and current AI models. Neuro-
computational models of human semantic memory suggest
that behavior across many different tasks is undergirded by a
common conceptual ”core” that is relatively insulated from
variations arising from different contexts or tasks(Rogers,
McClelland, et al., 2004; Jackson, Rogers, & Lambon Ralph,
2021). In contrast, representations of word meanings in large
language models depend essentially upon the broader linguis-
tic context. Indeed, in transformer architectures like GPT3,
each word vector is computed as a weighted average of vec-
tors from surrounding text, so it is unclear whether any word
possesses meaning outside or independent of context. Be-

cause this is so, the latent structures organizing its overt be-
haviors may vary considerably depending upon the particular
way the model’s behavior is probed. That is, the AI may not
have a coherent conceptual ”core” driving its behaviors, and
for this reason, may organize its internal representations quite
differently with changes to the task instruction or prompt.
Context-sensitivity of this kind is precisely what grants such
models their notable ability to simulate natural-seeming lan-
guage, but this same capacity may render them ill-suited for
understanding human conceptual representation.
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